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Exact solution of a two-dimensional Ising model in a correlated 
random magnetic field 
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t Institut fur Theoretische Physik, Universitat zu Koln, D-5000 Koln 41, West Germany 
/ I  Central Research Institute for Physics, H-1525 Budapest 114, POB 49, Hungary 
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Abstract. The Ising model in a random magnetic field h is studied on a square lattice. h 
has the same value along a row, but varies randomly from row to row. h =*a with 
probability p/2  and is zero with probability 1 -p. The quenched free energy F and specific 
heat C are calculated exactly. We find C - In p for small p at the Onsager temperature 
T,. It is shown that for p # 0, F(  p, T )  is not analytic in T at T = Tc, i.e. it has a Griffiths-like 
singularity. 

1. Introduction 

The behaviour of Ising spin systems in a random magnetic field (RMF) is a question 
still far from being settled. The phase transition is drastically altered in nature or 
completely suppressed. The values of critical exponents are largely changed and their 
determination is an outstanding problem. One of the most interesting questions is the 
lower critical dimensionality, d,,,  below which an infinitesimally small RMF prevents 
any kind of ordering. The Imry-Ma domain argument (Imry and Ma 1975) is believed 
to give the correct result for dl, in the case of systems with continuous symmetry 
( dl, = 4). The same argument for Ising models ( IM) predicts d,, = 2. This prediction, 
however, has been the subject of controversy for many years. The number of publica- 
tions, supporting d, ,  = 2 (Imry and Ma 1975, Grinstein and Ma 1982, Villain 1982, 
Villain et a1 1983, Imbrie 1984) and d,, = 3 (Parisi and SoGrlas 1979, Binder et a1 1981, 
Fytte et a1 1982, Mukamel 1982, Niemi 1982) is of the same order. Most of the 
theoretical works aiming at the determination of d, ,  are either approximate, or use 
extrapolations from rigorous results obtained at non-physical dimensionalities. 
Recently, however, a strong mathematical argument has been given in favour of d,,  = 2 
(Fisher er a1 1984). Physical realisations of RMF are random uniaxial antiferromagnets 
as pointed out by Fishman and Aharony (1975). Although the well-pronounced effect 
of RMF on the phase transition in IM has been experimentally demonstrated (Wong er 
a1 1982 and references therein) the question of d,,  could not yet be resolved. 

Information from exactly soluble models is rather scarce and even that is restricted 
to one dimension (Aeppli’and Bruinsma 1983, Gyorgyi and Rujan 1984, Siito and 
Zimanyi 1984). Using a special probability distribution for the magnetic field, Grinstein 
and Mukamel (1983) solved a I D  IM. They were able to calculate the largest linear 

$ Present address: CEA, SPSRM, Orme des Merisiers, Cif-sur-Yvette, Cedex 91191, France. 
8 Present address: Department of Applied Physics, Stanford University, Stanford, CA 94305, USA. 

0305-4470/86/ 101899+ 13%02.50 @ 1986 The Institute of Physics 1899 



1900 G Forgacs, W F Wolf and A Sut6 

size which a ferromagnetically ordered cluster (chain) of spins can attain. As a function 
of randomness the result for this length was consistent with d, ,  = 2. Using the same 
probability distribution, Pelcovits and Mukamel (1983) solved the I D  X Y  model, 
whereas Forgacs er a1 (1984) solved the I D  kinetic Ising model. 

All the above mentioned works dealt with uncorrelated RMF, i.e. the field is an  
independent random variable at each site of the lattice. Correlated randomness has 
been studied in the case of random exchange. McCoy and Wu (1968) solved a 2~ I M  

in which the nearest-neighbour couplings are the same between two subsequent rows 
of spins, but otherwise vary randomly from row to row. In higher dimensions expan- 
sions in Ed (the defect dimensionality) were used together with the renormalisation 
group (Dozegoutsev 1980, Boyanovsky and  Cardy 1982). The question of lower and 
upper critical dimensionality in the case of correlated randomness was studied by 
Aharony et a1 (1982). 

In the present paper (a short account of our work has been given earlier: see 
Forgacs er a1 (1985)) we study a 2~ I M  in the presence of correlated ( E d  = 1) RMF. Our 
model is defined by 

(1.1) 

Here sv = * l ,  i and j denote the row and column indices of an L x M square lattice, 
respectively. K = PJ, P - ’  = k,T, is the non-random exchange coupling ( T  is the 
absolute temperature). The field h, has the same value within a row, but varies randomly 
from row to row. We choose h, = +E, -cc or 0 with probabilities p /2 ,  p / 2  and (1 - p ) ,  
respectively. For M = 1, this model reduces to the ones discussed before (Aeppli and  
Bruinsma 1983, Gyorgyi and Rujan 1984, Suto and  Zimanyi 1984). The model defined 
above could be called the magnetic analogue of the McCoy-Wu model. The special 
probability distribution of the magnetic field h results in the splitting of the lattice 
into strips of finite width with definite boundary conditions. Since the free energy of 
such strips can be calculated exactly, the quenched free energy per site F ( p ,  T )  and 
the specific heat C( p ,  T )  of our model can also be written as (Grinstein and  Mukamel 
1983) 

PH = - K  c S!,(SlJ+l + S , + l J )  -c hA,.  
lj z, 

N = l  

where W N ( p )  =p2(1  - P ) ’ ~ - ’  is the probability of having a strip of width ( N +  1). f+ 
and f- denote the free energy densities (in the M + CO limit) of these strips, correspond- 
ing to different directions of h in the first and  ( N  + 1)th rows. In  the case off+,  spins 
in the two boundary rows point up  (or down), whereas in the case of f - ,  spins in the 
first row all point up, spins in the ( N +  l!th row all point down (or vice versa). Note 
that the boundary conditions for f+, f- are more restricted that just periodic and  
antiperiodic. 

Using the exact expression for F ( p ,  T )  the existence of a Griffiths-like singularity 
at T, will be established for p > 0. 

The paper is organised as follows. In § 2 the calculation of F ( p ,  T )  is presented; 
in § 3 we calculate C ( p ,  T )  and analyse its behaviour; § 4 contains the mathematical 
proof of the Griffiths singularity. In § 5, we summarise our results and  make some 
remarks on the possible extension of the model to higher dimensions, on the question 
of the lower critical dimensionality and on the relevance to experimental systems. 
Some details of the calculations are presented in the appendices. 
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2. Calculation of the quenched free energy 

The specific distribution of the magnetic field allows one to write the quenched free 
energy equation (1.2) as an  average over free energy densities of finite strips. A non-zero 
magnetic field only acts on the first and last row, giving rise to the boundary conditions 
described in § 1. Partition functions of strips with finite magnetic fields of equal sign 
imposed on the boundary rows have been calculated by Au-Yang and Fisher (1980) 
using the Pfaffian technique. As we shall see, however, the transfer matrix technique 
(Schultz et a1 1964) is more appropriate in our  case. 

In deriving (1.2) we have already used the spin-flip symmetry of the partition 
function for ( N +  1)  x M strips 

(2.1) Z++(  M ,  N )  = Z - - (  M ,  N )  z+-( M ,  N )  = z-+( M, N )  
where subscripts indicate the boundary conditions in obvious notation. Using this 
rather trivial property we show in appendix 1 that 

Z++( M, N )  = Tr( T Y P )  

Z+- (  M ,  N )  = 4 Tr( T Y P Q ) .  

Here T, is the symmetrised transfer matrix of {he   DIM (without magnetic field) 
(Schultz et a1 1964, Hoever et a1 1981 1, 

p = $ c l +  )( + I + I -)( - I )  (2.3) 

Q l v )  = I - v). (2.4) 
lv) describes an  arbitrary spin state of a row; 1-v) is the corresponding state with all 
spins flipped. (+ )  ( I - ) )  denotes the state with all spins up  (down). 

The advantage in using operators P, Q is that they have simple representations in 
terms of Pauli spin matrices. Performing a Jordan-Wigner transformation to fermions 
and Fourier transforming we finally obtain (see appendix 1) 

Z+,*,(M, N)=t[Z,(M, N)*ZdM, N)1 (2.5) 

z E ( M ,  N ) = A N ( K ) n  K N ( q )  q = ( r / M ) k  k = 1 , 3 ,  . . . ,  M - 1  (2.6) 

where 

4 

ZO(M N )  = A N ( K )  eZNK n K,v(q) Y = ( . n / M ) I  1 = 2 , 4  , . . . . ,  M - 2  
4 

(2.7) 

(2.8) 

cosh E ( q )  = CC‘*’+cos q E ( q ) z O .  (2.9) 
Here C‘* ’  = cosh 2K‘*’, S‘*’ = sinh 2K‘*’  where K‘*’ is the dual coupling, 
exp(-2K‘*’) = tanh K and A , ( K )  = (2SIMN’*.  M is assumed to be even. 

K N ( q )  =cosh  N E ( q ) +  N - ’ ( C + C ‘ * ’ c o s  q)d(cosh NE(q)) /a (cosh  E ( q ) )  

Using this in (1.2), we.obtain 

1 13 

- P F ( ~ ,  T )  =4 1 w,(P) lim - [2 In z,(M, N)+ln(l  - p ( ~ ,  N ) ~ ) ]  (2.10) 
N = l  M-r M 

where 

P(M, N )  = Z”(M, N ) / Z , ( M ,  N I .  (2.11) 
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In the first term within the brackets the M + CO limit is performed by replacing the q 
sum by an integral: 

M+CO. (2.12) 1: 2 1 
-In Z,(M, N )  = N ln(2S) + 
M -In KN(q) 

The second term in (2.10) is harder to analyse. For large M the quantities Z,  and Z, 
are exponentially close to each other. To leading order we obtain (see appendix 2) 

(2.13) 

where z( N )  is the zero of K N ( q )  in equation (2.8) in the complex z plane, z = eiq which 
is inside and closest to the unit circle. 

The calculation of the zeros of KN(q) is closely related to the distribution of 
wavenumbers in the I M  transfer matrix with free edges (Abraham 1971) or its dual, 
the hard-edged case (Abraham and Martin-Lof 1973). In fact, it can be shown that 
by choosing the horizontal direction as the direction of transfer, i.e. transferring from 
column to column instead of from row to row as in (2.2), one encounters precisely 
this problem. 

p (  M ,  N )  = 1 - 2 ~ (  N ) M  M >> 1 

From (2.11)-(2.13) we get the final result for the quenched free energy 

(2.14) 

Equation (2.14) is the starting point of our investigation of the critical properties of 
the RFIM, presented in the following sections. 

We finish this section with some remarks on related models. From the representation 
(A1.18) of the projector P it is obvious that instead of imposing infinite magnetic fields 
on the rows one may likewise use infinite horizontal couplings to align the spins within 
a given row. Thus our RFIM can also be viewed as a particular, as yet unsolved, 
realisation of the McCoy-Wu model (McCoy and Wu 1968, 1973) where in each row 
the horizontal couplings are CO or K with probabilities p or 1 - p ,  respectively. 

If, on the other hand, only magnetic fields of equal sign are allowed, i.e. h, = C O  

or 0 with probabilities p or 1 - p ,  then instead of the second term In[ 1 - p’( M ,  N ) ]  in 
(2.10) we obtain ln[ l+ p (  M ,  N ) ]  which because of (2.13) leads to a vanishing contribu- 
tion as M + W .  The corresponding quenched free energy is then given by (2.14) with 
z ( N )  1. This also clarifies the meaning of the two terms in (2.14). The first term 
describes the contribution from the global properties of the strips while the second 
gives the correction originating from the interfaces created by magnetic fields of diff erent 
sign. One expects that the critical behaviour of our model is mainly determined by 
the global properties of the strips, i.e. by the first term in (2.14). In fact, we shall show 
in § 3 (see also appendix 2) that the correction term in (2.14) is irrelevant, i.e. it gives 
no contribution to the critical behaviour. 

3. Critical behaviour 

In 9 2 we have obtained explicit expressions for the quenched free energy. Each term 
in the sum (2.14) is an analytic function of temperature. In the zero concentration 
limit, p + 0, or equivalently, no magnetic field, we should get back the free energy of 
the 2~ IM with a logarithmically divergent specific heat (Onsager 1944). Two questions 
then arise: how is this Onsager singularity restored in the limit p + 0, and does the 
model (1.1) still show a phase transition for finite p ?  
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dq tanh NE(q)  

To obtain a finite limit as p+O in (2.14) the overall factor p2 in WN(p) has to be 
compensated. This only happens if we can extract a term proportional to N from the 
terms within the brackets since 

It suffices to investigate the first term in (2.14). Rewriting In KN(q) as 

lncosh NE(q)+ln[ l+ tanh  NE(q)cos a ( q ) ]  

= NE (4) +In $[ 1 - e-2NE(q)] + In[ 1 + tanh NE(  q )  cos a(  q ) ]  (3.2) 
it is straightforward to show that only the first term in (3.2) contributes to the Onsager 
result 

while the other two remaining terms vanish at p = 0. 
The specific heat CO of the pure   DIM diverges logarithmically at T, which is 

obtained by differentiating (3.3) twice with respect to T and using (2.9). This divergence 
of CO at T, must show up in C(p+O, T,). Differentiating (3.2) twice with respect to 
T and putting T = T, one finds after a lengthy, but straightforward, calculation that 
only the In cosh NE(q)  term in (3.2) leads to a non-vanishing contribution at T, and 
p + 0 given by 

(3.4) 

where at T, 
cosh E ( ~ ) = ~ - c o s  4. (3.5) 

It is the large N part of the sum (3.4) which gives the important contribution as 
p + 0. To evaluate the integral in (3.4) for large N, we split the range of integration 
into two parts, j,"=j, +srlN. The first integral is bounded as N+oo and thus 
contributes only a constant to the specific heat. The second integral diverges as N + 03. 

To leading order we get 

1/ N 

where E ( 4 )  - q, q << 1, has been used. The singular part of the specific heat at T, is 
thus given by 

(3.7) 

Rewriting the sum as an integral, this leads to 

C ( p + O ,  T,)--[p/ln(l-p)I*lnlln(l -p)I--ln(p) p < <  1. (3.8) 
Consequently, when approaching the Onsager critical point ( p  = 0, T = T,) along the 
p axis or the T axis the singularity of the specific heat is always logarithmic. 

4. Weak singularity for p > 0 

As shown in 0 3 the specific heat at the critical temperature T, diverges logarithmically 
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as p + 0. Furthermore, the quenched free energy F (  p ,  T )  converges to the free energy 
of the pure 2~ IM F ( 0 ,  T ) .  In particular, F (  p ,  T )  yields the correct logarithmic 
singularity at T,. 

In this section we prove that even for p > 0 the free energy F (  p ,  T )  as a function 
of the temperature is non-analytic at T,, although the singularity is very mild: every 
derivative of F (  p ,  T )  with respect to T exists at T,. The Taylor expansion around T,, 
however, is not summable since the expansion coefficients increase faster than exponen- 
tially. Singular behaviour of thermodynamic functions of I M  with random fields has 
been discussed by Schwartz et al (1984). 

From both physical and mathematical points of view the situation is analogous to 
that of the Griffiths singularity (Griffiths 1969). This singularity occurs in randomly 
diluted Ising ferromagnets where the quenched free energy is a weighted sum of free 
energies of finite clusters plus, above the percolation threshold, the contribution from 
the infinite cluster. If this infinite cluster is absent, i.e. below the percolation threshold, 
there is thus no spontaneous magnetisation for any T > 0. Still, below the critical 
temperature T, of the pure model the quenched free energy as a function of the external 
magnetic field h is non-analytic at h = 0 in the whole concentration range. The 
singularity is caused by the zeros of the cluster partition function Z ( l ) ,  5 = e-ph, which, 
for T < T,, accumulate to 5 = 1 in the complex 5 plane as the cluster size increases. 
The mathematical proof exploits the Lee-Yang circle theorem (Yang and Lee 1952) 
claiming that all these zeros lie on the unit circle 151 = 1 .  It was already conjectured 
by Griffiths (1969) and since then it has been generally expected (see e.g. Parisi 1982) 
that similar singularities in the temperature variable also occur in random models 
whose pure analogue undergoes a phase transition. However, no proof has been given 
because of the lack of sufficient information about the distribution of the zeros. 

In our case the free energy is a weighted sum of free energies fN of strips of finite 
width N. Due to the one-dimensional character of these strips their free energy is an 
analytic function for any real, positive T. However, we shall show below that f N (  T )  
has branch-cut singularities in the complex T plane which for N + cc accumulate at 
T, and at no other real positive T. Moreover, we prove an approximate Lee-Yang 
circle theorem in the variable S E  sinh 2K: the singularities of fN as a function of S 
lie in the 1/  N neighbourhood of the unit circle 1s) = 1 .  

In order to see these properties we perform the q integration in the free energy 
(2.14). This is easily done by observing that K N ( q )  is an Nth order polynomial in 
cos q and thus can be written as 

with still unknown zeros QN,,(S). Using (4.1) in (2.14) we find, apart from uninteresting 
terms, 

a. / N  \ 

- P F  = c W N  ( Y ( (4.2) 

In the following the second term within the brackets in (4.2) will be neglected. 
This term cancels exactly against one term of the n sum (see appendix 2), thereby 
producing only notational changes in the following proof. 

We have no: been able to derive exact expressions for the zeros ON,"( S )  for general 
N. Fortunately, they are not needed in our analysis. An approximate solution of 
K~ = 0 relies on the observation that the zeros of the cosh N E ( q )  term in (2.8) are 

ln[ - 0 N . n  ( s ) + ( ON,,, ( S )  - 1 1 / 2 ~  + 1nI z ( N )  I ). 
N = l  n = l  
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easy to obtain and the corrections coming from the second term in (2.8) are small for 
large N. Indeed, cosh N E ( q )  = 0 implies 

cosh E (  9) 3 S + S-' +COS = COS ( Y N , ~  n = l , 2 ,  . . . ,  N (4.3) 

@,)n(S) =cos a N , n  - S - S - ' .  (4.4) 

QN,"(S) = Q ~ , ~ ( S ) - ( C ( * ' / N ) ( S ( * ) - C O S  CYN,~).  (4.5) 

where = (2n - 1 ) ~ / ( 2 N ) .  The solution of (4.3) is 

Linearising (4.1) around Q($,),,( S) and solving the resulting equation yields 

This expression is used to establish the location of the branch points of [ Ql,"( S )  - 1]''2 
in the complex S plane. For the physically allowed real positive values of S, this 
quantity cannot vanish unless S = 1 and N + m, n/ N + 0. The interesting branch points 
are therefore the solutions of 

Q N , n ( S )  = -1. (4.6) 

S ,  = exp(ki4)  cos 4 = C O S 2 ( f a N , n )  OS4Sf.rr. (4.7) 

Replacing Q by Q'" and using (4.4) we find two solutions S, both lying on the unit circle 

Looking for a solution of (4.6) in the form 3 = So+ E, So = S, then yields 

E =  N - ' ( I + s ~ ) ' / ~ ( I - s ~ c o s  a N , n ) .  (4.8) 
Therefore E is at most of order 1 / N  for any n and N and, in particular, if s* is close 
to 1, i.e. n/ N << 1, then from (4.8) E - 1/ N 2 .  Hence we establish that with N + CO, the 
branch points accumulate to the unit circle and, in particular, to S = 1 if n/ N + 0 also 
holds. This gives rise to a non-analyticity in the total free energy at S = 1, i.e. at T = T,, 
which is easier to see after differentiation with respect to S: 

(4.9) 

It is not difficult to show that I ; / v ~ , ~ ( S ) (  is finite in the neighbourhood of S = 1. 
Furthermore, in whatever small n:ighbourhood of S = 1, one can find an 3 = S( N, n) 
defined by (4.7) and (4.8). This S is an isolated singularity, since it is separated from 
the u?it circle, i.e. from the location of the possible accumulation points. Taking then 
S = rS, the sum (4.9) diverges as r +1.  It therefore cannot be analytic as S = 1. 

The nature of this singularity can be revealed by inspecting (4.2). For any given 
N the sum of n, i.e. the free energyf, of a finite strip, is an analytic function of S at 
S = 1. However, the radius of convergence of its Taylor expansion around S = 1 
decreases as 1/N, being equal to the distance of the set of branch points from 1. 
Therefore, the coefficient a,(N) in the expansion f N  =X.",=,, a , ( N ) ( S -  1)" must 
increase like N". Now the formal expansion of the total free energy F in powers of 
S - 1 still exists for p > 0, but the coefficient of ( S  - 1)" behaves asymptotically (m + CO) 

as 

am-m! [ ( l - p ) / ~ l " .  
Therefore the series cannot be convergent for any S. 

5. Summary and concluding remarks 

(4.10) 

In conclusion, we have solved exactly a 2~ IM in RMF. We have given explicit formulae 
for the quenched free energy density and for the singular part of the specific heat. The 
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model does not exhibit ordering for finite p .  The singularity of the pure 2D IM at the 
Onsager critical point (T,) manifests itself in the singular behaviour of the specific 
heat, namely C (  p ,  T,) - p + o  -In p .  It has been shown that for positive p the free energy 
F (  p ,  T )  is not an analytic function of T at T = T,; it has a Griffiths singularity. We 
established the existence of all temperature derivatives of the free energy at T = T,; 
the non-analyticity can therefore be interpreted as a phase transition of infinite order. 

As pointed out earlier, for M (the number of columns) = 1 our model reduces to 
that of Grinstein and Mukamel (1983). These authors argued that the specific distribu- 
tion chosen for the magnetic field is not as unphysical as it might seem. We can also 
argue that the generalisation of our model to d = 3 ( h  is the same within a plane) can 
probably have experimental relevance. As shown recently by Kirenzenow (1984) 
intercalation compounds may reveal disordered staging, i.e. the space between the 
planes of the host material is filled by the intercalant in a random sequence. If one 
can find an intercalant and host material with net magnetic moments and similar 
exchange interactions between these moments, then if g, >> gh ( g ,  and gh refer to the 
Land6 factors of the intercalant and host material, respectively) upon application of 
a strong external magnetic field in the direction perpendicular to the intercalant planes 
the situation h + 00 (or -00) and 0 can be, in principle, realised to a good approximation. 

Our calculation cannot resolve the question of lower critical dimensionality in the 
case of uncorrelated randomness. However, the lower critical dimensionality of our 
model, generalised to arbitrary dimensionality can be established. The generalisation 
of the model means that we allow for ( d  - 1)-dimensional correlation of the random 
magnetic field ( sd = d - 1). It is easy to see that in d = 3 the free energy has a 'true' 
singularity (not just Griffiths-like) at the Onsager point of the 2~ I M  (and probably at 
other temperatures between the 2~ and 3~ critical temperatures as well) even for finite 
p .  In the expression for F ( p ,  T ) ,  given by (1.2) (which is valid for any d ) ,  f-(2) (for 
example) carries this singularity. f-(2) is the free energy density of a system with three 
planes of Ising spins, with infinite and antiparallel magnetic fields on the first and 
third plane. Therefore, the effective magnetic field in the middle plane is zero and its 
statistical mechanics is given by the 2~ pure IM. In conclusion, the lower critical 
dimensionality of our model is two. 

Acknowledgments 

G F  acknowledges the hospitality of the Institut fur Theoretische Physik der Universitat 
zu Koln. WW acknowledges the hospitality of the Central Research Institute for 
Physics in Budapest. We benefited from useful conversations with Professor J Zittartz. 
This work was supported in part by the Sonderforschungsbereich 125 Aachen-Julich- 
Koln. 

Appendix 1 

In this appendix we shall calculate the partition functions (2.1) using standard transfer 
matrix techniques (Schultz et a1 1964). The partition function Z + + ( M ,  N )  of an 
( N +  1) x M strip with all spins pointing up in the first and ( N +  1)th row can be 
written as 

Z++(M, N)=(+lT"I+) (Al . l )  
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where T is the transfer matrix of the 2~ IM. With a complete set of states Iv) (Al.1) 
is rewritten as 

Z++( M, N )  = ( V I  TNI + )( + I Y) = 4 Tr( T N P )  (A1.2) 

where (2.1) has been used and P is the projector defined in (2.3). Similarly, we obtain 

Z+-(M,  N )  = ( + ( T N I - ) = i T r ( T N Q P )  (A1.3) 

where Q is the spin-flip operator (2.4). 
The traces in (A1.2) and (A1.3) are appropriately performed using the eigenstates 

of the transfer operator T which in terms of Pauli spin matrices ai, i = 1,2 ,3  is given 
by (Schultz et a1 1964, Hoever et a1 1981) 

T = A N (  K )  Tl T 2 .  (A1.4) 

Here 
M 

transfers from row to row and 

(A1.5) 

(A1.6) 

measures the interaction within a row. In (A1.6) periodic boundary conditions in the 
horizontal direction are chosen, i.e. U L + ~  = al. 

Although widely known, the results of the eigenvalue problem for the symmetrised 
operator T, = T:’*T1 T:’2 will be summarised below, since the notation is subsequently 
needed. 

The transfer operator Ts acts in the 2N-dimensional space S of spin states {(v)}. 
Introducing fermion operators C, C+ by a Jordan-Wigner transformation (Hoever et 
a1 1981) 

a ; = 2 c ; c J - 1  - u : = ( - l ) ~ ~ < I c : ” ( c ~ + c J )  (A1.7) 

3 

we obtain 

M M-1 

C a;U;+i = (C: - CJ)( CT+l+ C ~ + I )  - (CL  - CM )(CL+I+ CM+I) (A1.8) 
J = 1  J = 1  

where A ” = X z 1  C;CJ is the number of fermions. Obviously, N commutes with T,. 
Therefore T, consists of two parts: TE acts in the even subspace SE, (-l)”‘= 1 ,  and 
To acts in the odd subspace So, (-1)“‘ = - 1 .  The periodic boundary conditions in 
horizontal direction then imply CgLl = (-l)X+lC(l+), such that within each subspace 

Fourier transforming C, = M - ” 2  eIqJC4, we obtain 
4 

(A1.9) 

( A l .  10) 
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where 

T ( q )  = u ( q )  e x p [ E ( q ) ~ ; I u ( q ) - '  u ( q )  = exp[-f(a,+ qb2qI ( A l . l l )  
T(O)T(.ir)=exp[2K(C,'C,-C",C,)+2K'*'(C, 'C,-C,C~)] (A1.12) 

7; = c,c, + c-,c', - 1 T t  = c c - c,c- , 7: iTiT: ( A l .  13) 

cosh E ( q )  = CC'* '+cos  q (A1.14) 

The Fourier momenta in (A1.lO) take the values 

q E =  ( . r r lM)k  k =  1 , 3 , .  . . , M -1  even subspace SE (A1.15) 

qo= (TlM11 1 = 2 , 4 ,  . . . ,  M - 2  odd subspace So .  (Al.16) 

Note that M is assumed to be even. 
For each q value in (A1.15) and (A1.16) we encounter four different fermion states: 

two singly occupied states with either the q or the (-4) fermion present and the states 
of zero or  double occupancy. However, as shown below, only the space of the latter 
states, in which the 7 operators (A1.13) have the properties of Pauli spin matrices, is 
needed in the traces (A1.2) and (A1.3). 

Using the above formulae, the representation of the projection operator P (2.3) is 
easily derived by observing that 

sinh E ( q )  e'''' = C + C'*' cos q --is'*' sin q. 

M 

P = lim t exp( x c (g;u:+l - 1)) 
r - x  1'1 

which in terms of fermion operators is given by 

(Al.17) 

( A l .  18) 

From (A1.18) it is obvious that P is non-zero only in the space of zero and double 
occupancy of the fermions. Restricting ourselves to this space and performing the 
limit we get 

(A l .  19) 

For the spin-flip operator Q (2.4) the Jordan-Wigner transformation (Al.7) simply 
leads to 

(Al.20) 

Having derived all necessarv formulae, we can perform the calculation of the 
partition functions (A1.2) and (A1.3) in a straightforward way. Separating the traces 
of the even and  odd subspace we get using (A1.20) 

(A1.21) 

which is equation (2.5) in the text. The remaining traces are readily done using the 
representations ( A l . l l )  and (A1.19). For q # 0, .ir we obtain 

Tr T ( q ) ' P ( q )  =f[e'E'4'(1+cos a , ) + e - V E ' Y '  (1 --os a,)] = K ' v ( q )  (A1.22) 

yielding (2.6) for the even subspace SE, whereas in the odd subspace So a factor eZhK 
has to be added due to the q = 0, T terms in (Al.11) and (A1.19). 

z+, * I (  M, N 1 = o r ,  SE,( T,N P) * Tr, % I (  T 'vp)l 
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Appendix 2 

In this appendix we shall investigate the second term in (2.10) which originates from 
the two different boundary conditions for the strips. In addition we derive a n  
expression, equivalent to (2.14), for the quenched free energy. This expression is then 
used to show that the second term in (2.10) is irrelevant for the critical properties of 
our model. 

The last term in (2.10) is determined by the ratio p ( M ,  N) (2.11) which can be 
rewritten as 

(A2.1) 

where (2.6)-(2.8) have been used. As K , v ( q )  depends only on cos q we may expand 
In KN(q) in a Fourier series 

with Fourier coefficients 

a,( N )  = ' Ti dq  In K N (  q )  cos( k q ) .  
?r -77  

This yields together with (A2.1) 

(A2.2) 

(A2.3) 

(A2.4) 

On the other hand, KN(q) (2.8) is an  N t h  order polynomial in cos q and can 
therefore be written as 

(A2.5) 

Below we shall show that QN,n < -1, n = 1 , .  . . , N. Defining -2QN,n = z ~ , ~  +z& ,  0 s  
z ~ , ~  < 1, we get from (A2.3) 

(A2.6) 

such that 

i.e. p ( M ,  N )  is determined by the 'zeros' z ~ , ~ ,  n = 1 , .  . . , N of K N ( q ) .  

zN,% = z (  N ) ,  contributes to the sum in (A2.7), i.e. to leading order 
For sufficiently large M only the largest term, determined by the largest zero 

In p ( ~ ,  N )  = -2z(  N ) ~  M >> 1 (A2.8) 
such that 

p ( M,  N) = 1 - 2 2  ( M >> 1 (A2.9) 

which is (2.13) in the text. 
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The quenched free energy (2.14) can also be expressed in terms of the zeros z ~ , ~ .  
Using (A2.5) in (2.14) we obtain apart from uninteresting terms 

N 

- m p ,  T )  =; f W N ( P ) (  - c l~(-zN,n)+ln(-zN,% 1) (A2.10) 
N = l  n = l  

i.e. the n = no term cancels exactly. 
The above expression (A2.10) shows that the second term is of order 1/N as 

compared to the n sum and may therefore be neglected in the considerations of 0 3. 
Furthermore, the proof of the Griffiths singularity in 0 4 is modified only in an 
unessential way if this second term is taken into account. 

It remains to show that QN,n < -1, n = 1 ,  . . . , N for T 2 0 .  Using (2.9) we rewrite 
(A2.5) as 

N 

K N (  4) = 2N-1(  c(*)+ 1 )  n [cosh E (  4) -$ (X , ,  + X&!n)] (A2.11)  
n = l  

where 

t ( x , ,  + x & ) =  + CC'*' (A2.12) 

Rearrangement of (A2.11) yields that the quantities x ~ , ~  are the solutions of 

X 2 N  =- 1 ( x - A ) ( x - B )  = 
A B  ( x - A-')(x - B-I)  

(A2.13) 

(A2.14) 

Equation (A2.13) has been investigated by Abraham and Martin-Lof (1973) where it 
was shown that for T z  T,( B 2 1 )  all its solutions lie on the unit circle, while for 
T >  T,(B < 1 )  also two real solutions xo, x i 1  appear. Since CC'*'> 2 for all T, we 
immediately establish that all Qn,N S -1 with only one possible exception for T > T,. 
However, as K ~ (  7r/2) > 0 this last one must also be negative. Furthermore, all # -1  
since K N ( q )  does not vanish for OS q S 27r (cf (A1.22)). 
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